-4 B

'
N’

Artificial Intelligence
CE-417, Group 1
Computer Eng. Department
Sharif University of Technology

Fall 2023

By Mohammad Hossein Rohban, Ph.D. —/ —

Courtesy: Most slides are adopted from CSE-57Z3 (Washington U.)Yoriginal
slides for the textbook, and CS-188 (UC. Berkeley).
"/ |

N’ .

Markov Decision Processes

(MDPs)

o/

</

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

“ If there is a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

A —
_/ N Grid World Actions

o

_ Deterministic Grid World Stochastic Grid World

\ N

/
Markov Decision Processes W/

* An MDP is defined by:

A set of statess € S

A set of actions a € A

A transition function T(s, q, s’)
* Probability that a from s leads to s, i.e., P(s’| s, a)
* Also called the model or the dynamics

A reward function R(s, q, s’)
* Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

T Table R Table
-T(Sll‘,E?"' - - -) '
T(s31,N,s11) =0 R(s32, N, s33) = —0.01 (Breathing cost)

: R(s32, N, s33) = —1.01
T(s31,N,s32) = 0.8

T(s31,N,s21) =0.1 R(s32, N, s33) = 0.99
T(s31,N,s41) =0.1

- N

=
Markov Decision Processes /

* An MDP is defined by:

A set of statess € S

A set of actions a € A

A transition function T(s, q, s’)
* Probability that a from s leads to s, i.e., P(s’| s, a)
* Also called the model or the dynamics

A reward function R(s, q, s’)
* Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

* MDPs are non-deterministic search problems
* One way to solve them is with expectimax search
* We'll have a new tool soon

- N
_/ & What is Markov about MDPs?¢

—

g
* “Markov” generally means that given the present state, the future and the past
are independent

* For Markov decision processes, “Markov” means action outcomes depend only on
the current state

P(St—i—l = 3/|St — StaAt = Ay, Si—1 = St—1,At—1, .50 = So)

Andrey Markov
P(St_|_1 = 8/|St = S¢, At = Clt) (1856-1922)

* This is just like search, where the successor function could only depend on the
current state (not the history)

7 NS N e\

_/ N/
\/” Policies

—

S’
* In deterministic single-agent search problems, we

wanted an optimal plan, or sequence of actions,

from start to a goal

* For MDPs, we want an optimal policy *: S — A

* A policy 7 gives an action for each state

* An optimal policy is one that maximizes expected

utility if followed

Optimal policy when R(s, a, s’) =-0.03
* Expectimax didn’t compute entire policies for all non-terminals s ®

* It computed the action for a single state only

"NV & S

Optimal Policies

-0.03

R(s)

-0.01

R(s)

Example: Racing

- N

\/ . Example: Racing

—

~+ A robot car wants to travel far, quickly

Three states: cool, warm, overheated

0.5 +1

Two actions: slow, fast

Going faster gets double reward

Slow
+1

Slow

Overheated
1.0

Optimal Policy: =*(Warm) = Slow

n*(Overheated) = end e

y \

n*(Cool) = Fast 12 \'/

o Racing Search Tree

s \ 4
t MDP Search Trees

-

~ Each MDP state projects an expectimax-like search tree

(s, a)is ag-

(s,a,s) called a transition
T(s,a,5") = P(s” |s,a)

R(s,a,s’)

Utilities of Sequences

\/ Utilities of Sequences

o

S’

* What preferences should an agent have over reward sequences?

* More or less? [1,2,2] or [2, 3, 4]

* Now or later¢ [0,0,1] or [1,0,0]

\/ Stationary Preferences

-

/¢ In order to formalize optimality of a policy, we need i
assumption about preferences remaining the same (_!;/‘" @

independent of time. _}

* If you prefer one future to another starting tomorrow, then

you should still prefer that future if it were to start today: Q

[’I“, o, T1,72, - -] ~ [’I“, r/077a€|_77a/27 .-]
<~

[ro,r1,72,- 1 = [rg, 77,75, - -]

* Given stationary preferences, there are two ways to assign
utilities to sequences:

. Additive uiility: U ([ro,r1,70,...]) =rg+r1+ 1o+ -
* Discounted utility: U([TO, 1,72, ..]) =70+ Y71 _|_ /}/27«2 3 %

~ S

- e\),

o’

\/ Discounting

-

*|t’s reasonable to maximize the sum of rewards

* It’s also reasonable to prefer rewards now to rewards later

* One solution: values of rewards decay exponentially

v @

1 Y Y

Worth Now Worth Next Step Worth In Two Steps

=
e How to discount?

* Each time we descend a level, we multiply in the
discount once

* Why discount?

* Sooner rewards probably do have higher utility than
later rewards

* Think of it as a gamma chance of ending the process
at every step(chance of death!)

* Also helps our algorithms converge

* Example: discount of 0.5
e U([1,2,3]) = 1*1 + 0.5%2 + 0.25*3
.« U([3,2,1]) = 1*3 + 0.5*2 + 0.25*1
* U([1,2,3]) < U([3,2,1])

Discounting

—
-4 Quiz: Discounting

=

10 |

a b C d e

\-/ []
e Given:

* Actions: east, west, and exit (only available in exit states q, e)

* Transitions: deterministic

* Quiz 1: for y = 1, what is the optimal policy? 10

* Quiz 2: for y = 0.1, what is the optimal policy? 10

* Quiz 3: for which y are west and east equally good when in state d¢

- N

s ° Infinite Utilities?!

—

~® Problem: what if the game lasts forever? Do we get infinite rewards?

= Solutions:

® Finite horizon: (similar to depth-limited search)
= Terminate episodes after a fixed T steps (e.g. Life)

= Gives nonstationary policies (T depends on time left)

= Discounting: use 0 <y <1

U([rp,...mo0]) = D 7'rt < Rmax/(1 —7)
=0

“ . ”
= Smaller y means smaller "horizon™ — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing) 21

~—

S—

Recap: Defining MDPs

* Markov Decision Processes:

* MDP quantities so far:

Set of states S

Start state s,

Set of actions A

Transitions P(s’|s, a) (or T(s, a, s'))
Rewards R(s,q,s’) (and discount v)

Policy = choice of action for each state
Utility = sum of (discounted) rewards

Solving MDPs

Recall: Racing Search Tree ®

Racing Search Tree

e e
X
& S & &

TR T T T T T T T T TR
S
N? O

8

\/ J Racing Search Tree -

N’
* We’'re doing way too much work
with expectimax!

* Problem: states are repeated

* |dea: Only compute needed quantities
once, cache the rest in a lookup table

* Problem: tree goes on forever

* |dea: do a depth-limited computation, EE R EEEER |
but with increasing depths until change
is small
* Note: deep parts of the tree eventually
don’t matter if y <1 OV TR TERAE T T TEARE CEE 2

V\J\/ N

T\

- Optimal Quantities

S is a state

V*(s) = expected utility starting in s and
acting optimally
(s, a) is a g-state
The value (utility) of a g-state (s,a):
Q"(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

(s,a,s’) is a transition

7 (s) = optimal action from state s o, N\

Snapshot of Demo — Gridworld V Values

VALUES AFTER 100 ITERATIONS Noise = 0.2 28

Discount = 0.9

Living rew\aJrc{= 0 /

- -
- Values of States (The Bellman Equations)

—

* Definition of “optimal utility” via expectimax recurrence gives a simple
one-step lookahead relationship amongst optimal utility values

V*(s) = maxQ*(s, a) ¢
Q*(s,0) = 3 T(s,0,5) [R(s,0,5") + V(5]

V*i(s) = mO?XZT(S, a,s) {R(s, a,s’) + vv*(s')}

S T

* These are the bellman equations, and they characterize optimal values
in a way we’ll use over and over

* But how do we solve these equations? 30 -/

Value lteration

] N\
\/ Another View: Time-Limited Values

~—

< Define V.(s) to be the optimal value of s if the game ends in

k more time steps

* Equivalently, it's what a depth-k expectimax would give from s

- Value lteration

S~

* Start with Vy(s) = O: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(s, a,s) {R(s, a,s’) + WV]{(S/)}

.
.

///
S .

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
* Basic idea: approximations get refined towards optimal values
* Policy may converge long before values do

VALUES AFTER O ITERATIONS Noise = 0.2 &

Discount = 0.9

Living rewz‘a/rd\= 0 /

VALUES AFTER 1 ITERATIONS Noise = 0.2

35 \/
Discount = 0.9

g e
Living rewgrd\— 0 /

VALUES AFTER 2 ITERATIONS Noise = 0.2

36 \/
Discount = 0.9

. et
Living rewa)rd\— 0 /

VALUES AFTER 3 ITERATIONS Noise = 0.2 ik

Discount = 0.9

Living rew;lfc{: 0 /

VALUES AFTER 4 ITERATIONS Noise = 0.2

38 \/
Discount = 0.9

Living rewzfrc{: 0 /

0.51 »| 0.72 »| 0.84)

VALUES AFTER 5 ITERATIONS Noise = 0.2

39 \/
Discount = 0.9

Living rew5/|’<{= 0 /

VALUES AFTER 6 ITERATIONS Noise = 0.2

40 \/
Discount = 0.9

Living rew5/|'<{= 0 /

VALUES AFTER 7 ITERATIONS Noise = 0.2

41 \/
Discount = 0.9

Living rew5/|'<{= 0 /

VALUES AFTER 8 ITERATIONS Noise = 0.2

42 \/
Discount = 0.9

Living rewEJrq= 0 /

VALUES AFTER 9 ITERATIONS Noise = 0.2

43 \/
Discount = 0.9

Living rewEJrq= 0 /

VALUES AFTER 10 ITERATIONS Noise = 0.2

44 N’
Discount = 0.9

Living rewEJrq= 0 /

VALUES AFTER 11 ITERATIONS Noise = 0.2

45 \/
Discount = 0.9

Living rewEJrq= 0 /

H
N VN

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount =J).9
Living rewarq= 0

46

o
J.

VALUES AFTER 100 ITERATIONS Noise = 0.2

47 \/
Discount = 0.9

Living rewEJrq= 0 /

AT T | O B S VT | O O Y o A | Y

48

LA THEIRTLL
N 1 /

Vil) Vi(@) V1(“)}<::I NN ‘! AR ERERR k%‘i‘!

Q) Wi

Example: Value Iteration

Overheated

Assume no discount!

S

~ NS

49

S
N 3\

- } Vi1(s) < max} T(s,a,s) [R(Sa‘%)+ VVk(S;)]

o/
J

Recap: The Bellman Equations

How to be optimal:

Step 1: Take correct first action

-
1 'P . ?
- Value lteration? The Bellman Equations:

~—

* Bellman equations characterize the optimal values:

V*i(s) = mC?XZT(S, a,s) {R(s,a, s") + 'yV*(s’)}

* Value iteration computes them:

Viet1(s) <+ mC?XZT(S, a,s) {R(s, a,s’) + ’ka(s/)}

S

 Value iteration is just a fixed point solution method

e

7
,/, ,
-"s,a,S

* ...though the V, vectors are also interpretable as time-limited values

vu_/

~

Value lteration Convergence

*“How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

e Case 1:if the tree has maximum depth M, then V,, holds the actual
untruncated values

* (Case 2:if the discount is less than 1

Sketch: for any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees

The difference is that on the bottom layer, V,,; has actual rewards
while V, has zeros

That last layer is at best all Ry;ax
It is at worst Ryn
But everything is discounted by yk that far out / \ /

So V, and V,,, are at most yk max |R| different

So as k increases, the values converge

Policy Methods

Policy Evaluation

./ Fixed Policies

N’
— Do the optimal action Do what 1 says to do
S
/,// y g
~s,a,S
s’ , A
A s
* Expectimax trees max over all actions to compute the optimal values O

* If we fixed some policy 1t(s), then the tree would be simpler — only one action per state \/

e ...though the tree’s value would depend on which policy'we fi@/ 9, \ / 55

. Utilities for a Fixed Policy

~—

+ Another basic operation: compute the utility of a state s under
a fixed (generally non-optimal) policy

» Define the utility of a state s, under a fixed policy n:

V™(s) = expected total discounted rewards starting in s and following &

* Recursive relation (one-step look-ahead / bellman equation):

VT(s) = > T(s,m(s),s)[R(s,m(s),s) + V" (s)]

YN (U >

= Policy Evaluation

—

g

 How do we calculate the V’s for a fixed policy n?

* |dea 1: turn recursive bellman equations into updates
(Like value iteration)

V& (s) =0

Vig1(s) <= > T(s,m(s), sH[R(s,7m(s),8") + 7V (sH] *

S

 Efficiency: O(S?) per iteration

s;7(s),s’

* |dea 2: without the maxes, the bellman equations are just a linear system

* Solve with your favorite linear system solver

V=(s4)

V= (s2)

—

_/ N Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Extraction

- 4
\/ et Computing Actions from Values

-

o
* Let’s imagine we have the optimal values V*(s)

* How should we act?

* |t's not obvious!

* We need to do a mini-expectimax (one step)

7*(s) =arg max Y T(s,a,s')[R(s,a,s) +~V*(s)]

S

* This is called policy extraction, since it gets the policy implied by the values /

61

"V QS

| O/ N—
\/ —~ Computing Actions from Q-Values

—

~ Let’s imagine we have the optimal Q-values:

* How should we act?

* Completely trivial to decide!

(s) =arg max Q(s,a)

* Important lesson: actions are easier to select from g-values than values! \./

¥ NS Nt il)

Policy Iteration

$77\~
, [~

) ;E" e
=R
—

=]

uu ®

Problems with Value Iteration
-

~—

- * Value iteration repeats the Bellman updates:

Viet1(8) < maaXZT(s,a, s [R(s,a, s + nyk(s’)]

S

* Problem 1:it’s slow — O(S2A) per iteration

* Problem 2: the “max” at each state rarely changes

* Problem 3: the policy often converges long before the values

YN (U L).

VALUES AFTER O ITERATIONS Noise = 0.2 -

Discount = 0.9
Living rewﬁ/rd\= 0

VALUES AFTER 1 ITERATIONS Noise = 0.2

66 \/
Discount =0.9

5 c el
Living rewgrd\— 0 /

VALUES AFTER 2 ITERATIONS Noise = 0.2 A

Discount =0.9
Living rewET'd\= 0

VALUES AFTER 3 ITERATIONS Noise = 0.2 -

Discount =0.9
Living rewET'd\= 0

VALUES AFTER 4 ITERATIONS Noise = 0.2 -

Discount =0.9
Living rewET'd\= 0

0.51 »| 0.72 »| 0.84)

VALUES AFTER 5 ITERATIONS Noise = 0.2

70 \/
Discount =0.9

Living rewEJrck= 0 /

VALUES AFTER 6 ITERATIONS Noise = 0.2

71 \/
Discount =0.9

Living rewEJrck= 0 /

VALUES AFTER 7 ITERATIONS Noise = 0.2

72 \/
Discount =0.9

Living rewEer\= 0 /

VALUES AFTER 8 ITERATIONS Noise = 0.2

73 \/
Discount =0.9

Living rewE\er\= 0 /

VALUES AFTER 9 ITERATIONS Noise = 0.2

74 \/
Discount =0.9

Living rewE\er\= 0 /

VALUES AFTER 10 ITERATIONS Noise = 0.2

75 \/
Discount =0.9

Living rewE\er\= 0 /

VALUES AFTER 11 ITERATIONS Noise = 0.2

76 \/
Discount =0.9

Living rewE\er\= 0 /

H
N VN

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount =0.9
Living rewE\er\= 0

77

o
J.

VALUES AFTER 100 ITERATIONS Noise = 0.2

78 \/
Discount =0.9

Living rewE\er\= 0 /

S—

~—

- Policy Iteration

* Alternative approach for optimal values:

* Step 1: policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

e Step 2: policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimall) utilities as future values

* Repeat steps until policy converges

* This is policy iteration
* It's still optimall

* Can converge (much) faster under some conditions

ey
-4 Policy Iteration

=

* Evaluation: for fixed current policy 7, find values with policy evaluation:

* lterate until values converge:

Vit 1 (8) < ZT(s mi(s), ') |R(s,mi(s),s") + vV, (s))]

* Improvement: for fixed values, get a better policy using policy extraction

* One-step look-ahead:

m;+1(s) = arg maXZT(s, a,s) [R(s, a,s) + vvwi(sl)}

S/

Comparison

S

* Both value iteration and policy iteration compute the same thing (all optimal values)

* |n value iteration:
* Every iteration updates both the values and (implicitly) the policy

* We don'’t track the policy, but taking the max over actions implicitly recomputes it

* |In policy iteration:

* We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
* After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

* The new policy will be better (or we're done)

* Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

* So you want to....
* Compute optimal values: use value iteration or policy iteration
* Compute values for a particular policy: use policy evaluation

* Turn your values into a policy: use policy extraction (one-step lookahead)

* These all look the same!
* They basically are — they are all variations of bellman updates
* They all use one-step lookahead expectimax fragments

* They differ only in whether we plug in a fixed policy or max over actions

Y N

Double Bandits

— N

\/ =~ Double-Bandit MDP

—

N’

" Actions: blue, red No discount

* States: win, lose 0.25 SO 100 time steps
Both states have

the same value

g

~—

N’

Offline Planning

**Solving MDPs is offline planning

* You determine all quantities through computation

* You need to know the details of the MDP

* You do not actually play the game!

-

-

Play Red

Play Blue

Value

150

100

~

/

No discount
100 time steps

Both states have
the same value

Let’s Play!

$2 $2 S0 $2 S2
$2 $2 S0 S0 S0

\/ ~ Online Planning

* Rules changed! Red’s win chance is different.

?? SO

Let’s Play!

S0 S0 SO S2 SO
$2 S0 SO SO SO0

J What Just Happened?

—

*That wasn’t planning, it was learning!
* Specifically, reinforcement learning
* There was an MDP, but you couldn’t solve it with just computation

* You needed to actually act to figure it out

* Important ideas in reinforcement learning that came up

* Exploration: you have to try unknown actions to get information

Exploitation: eventually, you have to use what you know

Regret: even if you learn intelligently, you make mistakes

Sampling: because of chance, you have to try things repeatedly ~/

Difficulty: learning can be much harder than solving a known MDP /

~ NS

Next Time: Reinforcement Learning!

